Given:
\( \int f(x)\, dx = g(x) \)
Required: \( \int x^5 f(x^3)\, dx \)
Use substitution:
Let \( u = x^3 \Rightarrow du = 3x^2\, dx \Rightarrow dx = \frac{du}{3x^2} \)
Now rewrite the integral:
\[ \int x^5 f(x^3)\, dx = \int x^5 f(u) \cdot \frac{du}{3x^2} = \frac{1}{3} \int x^3 f(u)\, du \]
But \( x^3 = u \), so:
\[ \frac{1}{3} \int u f(u)\, du \]
Now integrate by parts or use the identity:
\[ \int u f(u)\, du = u g(u) - \int g(u)\, du \]
Final answer:
\[ \int x^5 f(x^3)\, dx = \frac{1}{3} \left[ x^3 g(x^3) - \int g(x^3) \cdot 3x^2\, dx \right] = x^3 g(x^3) - \int x^2 g(x^3)\, dx \]
\[ \boxed{ \int x^5 f(x^3)\, dx = x^3 g(x^3) - \int x^2 g(x^3)\, dx } \]
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.